1. 列裁剪与分区裁剪
列裁剪就是在查询时只读取需要的列,分区裁剪就是只读取需要的分区。当列很多或者数据量很大时,如果 select * 或者不指定分区,全列扫描和全表扫描效率都很低。
Hive 在读数据的时候,可以只读取查询中所需要用到的列,而忽略其他的列。这样做可以节省读取开销:中间表存储开销和数据整合开销。
2. Group By
默认情况下,Map阶段同一Key数据分发给一个Reduce,当一个key数据过大时就倾斜了。
并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。
☆开启Map端聚合参数设置如下所示
(1)是否在Map端进行聚合,默认为True
set hive.map.aggr = true;
(2)在Map端进行聚合操作的条目数目
set hive.groupby.mapaggr.checkinterval = 100000;
(3)有数据倾斜的时候进行负载均衡(默认是false)
set hive.groupby.skewindata = true;
当上述数据倾斜负载均衡选项设定为 true,生成的查询计划会有两个MR Job:
第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的; 第二个MR Job再根据预处理的数据结果按照Group By Key分布到后续的Reduce中
优化以后代码如下:
hive (default)> set hive.groupby.skewindata = true;
hive (default)> select deptno from emp group by deptno;
Stage-Stage-1: Map: 1 Reduce: 5 Cumulative CPU: 28.53 sec HDFS Read: 18209 HDFS Write: 534 SUCCESS
Stage-Stage-2: Map: 1 Reduce: 5 Cumulative CPU: 38.32 sec HDFS Read: 15014 HDFS Write: 9 SUCCESS
Total MapReduce CPU Time Spent: 1 minutes 6 seconds 850 msec
OK
deptno
10
20
3. Vectorization
vectorization : 矢量计算的技术,在计算类似scan, filter, aggregation的时候, vectorization技术以设置批处理的增量大小为 1024 行单次来达到比单条记录单次获得更高的效率。
set hive.vectorized.execution.enabled = true;
set hive.vectorized.execution.reduce.enabled = true;
4. 多重模式
如果你碰到一堆SQL,并且这一堆SQL的模式还一样。都是从同一个表进行扫描,做不同的逻辑。有可优化的地方:如果有n条SQL,每个SQL执行都会扫描一次这张表。
insert .... select id,name,sex, age from student where age > 17;
insert .... select id,name,sex, age from student where age > 18;
insert .... select id,name,sex, age from student where age > 19;
隐藏了一个问题:这种类型的SQL有多少个,那么最终。这张表就被全表扫描了多少次
insert into t_ptn partition(city=A). select id,name,sex, age from student where city= A;
insert into t_ptn partition(city=B). select id,name,sex, age from student where city= B;
insert into t_ptn partition(city=c). select id,name,sex, age from student where city= c;
-- 重点:修改为如下代码
from student
insert into t_ptn partition(city=A) select id,name,sex, age where city= A
insert into t_ptn partition(city=B) select id,name,sex, age where city= B
如果一个 HQL 底层要执行 10 个 Job,那么能优化成 8 个一般来说,肯定能有所提高,多重插入就是一个非常实用的技能。一次读取,多次插入,有些场景是从一张表读取数据后,要多次利用。
5. in/exists语句
在Hive的早期版本中,in/exists语法是不被支持的,但是从 hive-0.8x 以后就开始支持这个语法。但是不推荐使用这个语法。虽然经过测验,Hive-2.3.6 也支持 in/exists 操作,但还是推荐使用 Hive 的一个高效替代方案:left semi join
比如说:-- in / exists 实现
select a.id, a.name from a where a.id in (select b.id from b);
select a.id, a.name from a where exists (select id from b where a.id = b.id);
可以使用join来改写:
select a.id, a.name from a join b on a.id = b.id;
应该转换成: -- left semi join 实现
select a.id, a.name from a left semi join b on a.id = b.id;
6. CBO优化
join的时候表的顺序的关系:前面的表都会被加载到内存中。后面的表进行磁盘扫描
select a.*, b.*, c.* from a join b on a.id = b.id join c on a.id = c.id;
Hive 自 0.14.0 开始,加入了一项 "Cost based Optimizer" 来对 HQL 执行计划进行优化,这个功能通过 "hive.cbo.enable" 来开启。在 Hive 1.1.0 之后,这个 feature 是默认开启的,它可以 自动优化 HQL中多个 Join 的顺序,并选择合适的 Join 算法。
CBO,成本优化器,代价最小的执行计划就是最好的执行计划。传统的数据库,成本优化器做出最优化的执行计划是依据统计信息来计算的。
Hive 的成本优化器也一样,Hive 在提供最终执行前,优化每个查询的执行逻辑和物理执行计划。这些优化工作是交给底层来完成的。根据查询成本执行进一步的优化,从而产生潜在的不同决策:如何排序连接,执行哪种类型的连接,并行度等等。
要使用基于成本的优化(也称为 CBO),请在查询开始设置以下参数:
set hive.cbo.enable=true;
set hive.compute.query.using.stats=true;
set hive.stats.fetch.column.stats=true;
set hive.stats.fetch.partition.stats=true;
7. 谓词下推
将SQL 语句中的 where 谓词逻辑都尽可能提前执行,减少下游处理的数据量。对应逻辑优化器是 PredicatePushDown,配置项为hive.optimize.ppd,默认为true。
1)打开谓词下推优化属性
hive (default)> set hive.optimize.ppd = true;谓词下推,默认是true
2)查看先关联两张表,再用where条件过滤的执行计划
hive (default)> explain select o.id from bigtable b join bigtable o on o.id = b.id where o.id <= 10;
3)查看子查询后,再关联表的执行计划
hive (default)> explain select b.id from bigtable b join (select id from bigtable where id <= 10) o on b.id = o.id;
8. MapJoin
MapJoin 是将 Join 双方比较小的表直接分发到各个 Map 进程的内存中,在 Map 进程中进行 Join 操 作,这样就不用进行 Reduce 步骤,从而提高了速度。如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成Join。容易发生数据倾斜。可以用MapJoin把小表全部加载到内存在Map端进行Join,避免Reducer处理。
1)开启MapJoin参数设置
设置自动选择MapJoin
set hive.auto.convert.join=true;默认为true
大表小表的阈值设置(默认25M以下认为是小表):
set hive.mapjoin.smalltable.filesize=25000000;
2)MapJoin工作机制
MapJoin 是将 Join 双方比较小的表直接分发到各个 Map 进程的内存中,在 Map 进程中进行 Join 操作,这样就不用进行 Reduce 步骤,从而提高了速度。
3)案例实操:
开启MapJoin功能
set hive.auto.convert.join = true; 默认为true
执行小表JOIN大表语句
-- 注意:此时小表(左连接)作为主表,所有数据都要写出去,因此此时会走reduce,mapjoin失效
Explain insert overwrite table jointable
select b.id, b.t, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from smalltable s
left join bigtable b
on s.id = b.id;
Time taken: 24.594 seconds
执行大表JOIN小表语句
Explain insert overwrite table jointable
select b.id, b.t, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable b
left join smalltable s
on s.id = b.id;
Time taken: 24.315 seconds
9. 大表、大表SMB Join
SMBJoin :Sort Merge Bucket Join
1)创建第二张大表
create table bigtable2(
id bigint,
t bigint,
uid string,
keyword string,
url_rank int,
click_num int,
click_url string)
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/bigtable' into table bigtable2;
2)测试大表直接JOIN
insert overwrite table jointable
select b.id, b.t, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable a
join bigtable2 b
on a.id = b.id;
-- 测试结果:Time taken: 72.289 seconds
insert overwrite table jointable
select b.id, b.t, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable a
join bigtable2 b
on a.id = b.id;
3)创建分通表1
create table bigtable_buck1(
id bigint,
t bigint,
uid string,
keyword string,
url_rank int,
click_num int,
click_url string)
clustered by(id)
sorted by(id)
into 6 buckets
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/bigtable' into table bigtable_buck1;
4)创建分通表2,分桶数和第一张表的分桶数为倍数关系
create table bigtable_buck2(
id bigint,
t bigint,
uid string,
keyword string,
url_rank int,
click_num int,
click_url string)
clustered by(id)
sorted by(id)
into 6 buckets
row format delimited fields terminated by '\t';
load data local inpath '/opt/module/data/bigtable' into table bigtable_buck2;
5)设置参数
set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;
set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;
6)测试 Time taken: 34.685 seconds
insert overwrite table jointable
select b.id, b.t, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable_buck1 s
join bigtable_buck2 b
on b.id = s.id;
10. 笛卡尔积
Join的时候不加on条件,或者无效的on条件,因为找不到 Join key,Hive 只能使用1个 Reducer 来完成笛卡尔积。当 Hive 设定为严格模式(hive.mapred.mode=strict,nonstrict)时,不允许在 HQL 语句中出现笛卡尔积。