Semaphore,现在普遍翻译为“信号量”,以前也曾被翻译成“信号灯”,因为类似现实生活里的红绿灯,车辆能不能通行,要看是不是绿灯。同样,在编程世界里,线程能不能执行,也要看信号量是不是允许。

信号量是由大名鼎鼎的计算机科学家迪杰斯特拉(Dijkstra)于 1965 年提出,在这之后的 15 年,信号量一直都是并发编程领域的终结者,直到 1980 年管程被提出来,我们才有了第二选择。目前几乎所有支持并发编程的语言都支持信号量机制,所以学好信号量还是很有必要的。

下面我们首先介绍信号量模型,之后介绍如何使用信号量,最后我们再用信号量来实现一个限流器。

信号量模型

信号量模型还是很简单的,可以简单概括为:一个计数器,一个等待队列,三个方法。在信号量模型里,计数器和等待队列对外是透明的,所以只能通过信号量模型提供的三个方法来访问它们,这三个方法分别是:init()、down() 和 up()。你可以结合下图来形象化地理解。

 

这三个方法详细的语义具体如下所示。

  • init():设置计数器的初始值。
  • down():计数器的值减 1;如果此时计数器的值小于 0,则当前线程将被阻塞,否则当前线程可以继续执行。
  • up():计数器的值加 1;如果此时计数器的值小于或者等于 0,则唤醒等待队列中的一个线程,并将其从等待队列中移除。

这里提到的 init()、down() 和 up() 三个方法都是原子性的,并且这个原子性是由信号量模型的实现方保证的。在 Java SDK 里面,信号量模型是由 java.util.concurrent.Semaphore 实现的,Semaphore 这个类能够保证这三个方法都是原子操作。

如果你觉得上面的描述有点绕的话,可以参考下面这个代码化的信号量模型。

class Semaphore{
  // 计数器
  int count;
  // 等待队列
  Queue queue;
  // 初始化操作
  Semaphore(int c){
    this.count=c;
  }
  // 
  void down(){
    this.count--;
    if(this.count<0){
      // 将当前线程插入等待队列
      // 阻塞当前线程
    }
  }
  void up(){
    this.count++;
    if(this.count<=0) {
      // 移除等待队列中的某个线程 T
      // 唤醒线程 T
    }
  }
}

这里再插一句,信号量模型里面,down()、up() 这两个操作历史上最早称为 P 操作和 V 操作,所以信号量模型也被称为 PV 原语。另外,还有些人喜欢用 semWait() 和 semSignal() 来称呼它们,虽然叫法不同,但是语义都是相同的。在 Java SDK 并发包里,down() 和 up() 对应的则是 acquire() 和 release()。

如何使用信号量

通过上文,你应该会发现信号量的模型还是很简单的,那具体该如何使用呢?其实你想想红绿灯就可以了。十字路口的红绿灯可以控制交通,得益于它的一个关键规则:车辆在通过路口前必须先检查是否是绿灯,只有绿灯才能通行。这个规则和我们前面提到的锁规则是不是很类似?

其实,信号量的使用也是类似的。这里我们还是用累加器的例子来说明信号量的使用吧。在累加器的例子里面,count+=1 操作是个临界区,只允许一个线程执行,也就是说要保证互斥。那这种情况用信号量怎么控制呢?

其实很简单,就像我们用互斥锁一样,只需要在进入临界区之前执行一下 down() 操作,退出临界区之前执行一下 up() 操作就可以了。下面是 Java 代码的示例,acquire() 就是信号量里的 down() 操作,release() 就是信号量里的 up() 操作。

static int count;
// 初始化信号量
static final Semaphore s 
    = new Semaphore(1);
// 用信号量保证互斥    
static void addOne() {
  s.acquire();
  try {
    count+=1;
  } finally {
    s.release();
  }
}

下面我们再来分析一下,信号量是如何保证互斥的。假设两个线程 T1 和 T2 同时访问 addOne() 方法,当它们同时调用 acquire() 的时候,由于 acquire() 是一个原子操作,所以只能有一个线程(假设 T1)把信号量里的计数器减为 0,另外一个线程(T2)则是将计数器减为 -1。对于线程 T1,信号量里面的计数器的值是 0,大于等于 0,所以线程 T1 会继续执行;对于线程 T2,信号量里面的计数器的值是 -1,小于 0,按照信号量模型里对 down() 操作的描述,线程 T2 将被阻塞。所以此时只有线程 T1 会进入临界区执行count+=1;

当线程T1 执行 release() 操作,也就是 up() 操作的时候,信号量里计数器的值是 -1,加 1 之后的值是 0,小于等于 0,按照信号量模型里对 up() 操作的描述,此时等待队列中的 T2 将会被唤醒。于是 T2 在 T1 执行完临界区代码之后才获得了进入临界区执行的机会,从而保证了互斥性。

快速实现一个限流器

上面的例子,我们用信号量实现了一个最简单的互斥锁功能。估计你会觉得奇怪,既然有 Java SDK 里面提供了 Lock,为啥还要提供一个 Semaphore ?其实实现一个互斥锁,仅仅是 Semaphore 的部分功能,Semaphore 还有一个功能是 Lock 不容易实现的,那就是:Semaphore 可以允许多个线程访问一个临界区

现实中还有这种需求?有的。比较常见的需求就是我们工作中遇到的各种池化资源,例如连接池、对象池、线程池等等。其中,你可能最熟悉数据库连接池,在同一时刻,一定是允许多个线程同时使用连接池的,当然,每个连接在被释放前,是不允许其他线程使用的。

其实前不久,我在工作中也遇到了一个对象池的需求。所谓对象池呢,指的是一次性创建出 N 个对象,之后所有的线程重复利用这 N 个对象,当然对象在被释放前,也是不允许其他线程使用的。对象池,可以用 List 保存实例对象,这个很简单。但关键是限流器的设计,这里的限流,指的是不允许多于 N 个线程同时进入临界区。那如何快速实现一个这样的限流器呢?这种场景,我立刻就想到了信号量的解决方案。

信号量的计数器,在上面的例子中,我们设置成了 1,这个 1 表示只允许一个线程进入临界区,但如果我们把计数器的值设置成对象池里对象的个数 N,就能完美解决对象池的限流问题了。下面就是对象池的示例代码。

class ObjPool<T, R> {
  final List<T> pool;
  // 用信号量实现限流器
  final Semaphore sem;
  // 构造函数
  ObjPool(int size, T t){
    pool = new Vector<T>(){};
    for(int i=0; i<size; i++){
      pool.add(t);
    }
    sem = new Semaphore(size);
  }
  // 利用对象池的对象,调用 func
  R exec(Function<T,R> func) {
    T t = null;
    sem.acquire();
    try {
      t = pool.remove(0);
      return func.apply(t);
    } finally {
      pool.add(t);
      sem.release();
    }
  }
}
// 创建对象池
ObjPool<Long, String> pool = 
  new ObjPool<Long, String>(10, 2);
// 通过对象池获取 t,之后执行  
pool.exec(t -> {
    System.out.println(t);
    return t.toString();
});

我们用一个 List来保存对象实例,用 Semaphore 实现限流器。关键的代码是 ObjPool 里面的 exec() 方法,这个方法里面实现了限流的功能。在这个方法里面,我们首先调用 acquire() 方法(与之匹配的是在 finally 里面调用 release() 方法),假设对象池的大小是 10,信号量的计数器初始化为 10,那么前 10 个线程调用 acquire() 方法,都能继续执行,相当于通过了信号灯,而其他线程则会阻塞在 acquire() 方法上。对于通过信号灯的线程,我们为每个线程分配了一个对象 t(这个分配工作是通过 pool.remove(0) 实现的),分配完之后会执行一个回调函数 func,而函数的参数正是前面分配的对象 t ;执行完回调函数之后,它们就会释放对象(这个释放工作是通过 pool.add(t) 实现的),同时调用 release() 方法来更新信号量的计数器。如果此时信号量里计数器的值小于等于 0,那么说明有线程在等待,此时会自动唤醒等待的线程。

简言之,使用信号量,我们可以轻松地实现一个限流器,使用起来还是非常简单的。

总结

信号量在 Java 语言里面名气并不算大,但是在其他语言里却是很有知名度的。Java 在并发编程领域走的很快,重点支持的还是管程模型。 管程模型理论上解决了信号量模型的一些不足,主要体现在易用性和工程化方面,例如用信号量解决我们曾经提到过的阻塞队列问题,就比管程模型麻烦很多,你如果感兴趣,可以课下了解和尝试一下。