题目地址:https://leetcode.com/problems/rotate-function/description/
题目描述:
Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
- n is guaranteed to be less than 10^5.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
题目大意
给出了一个数组A,定义了一个旋转函数,F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
,公式是对数组旋转的,也就是因子的开始位置会遍历到数组的每个位置。
解题方法
看了数据规模是10^5,可以知道时间复杂度是O(N)量级,这就难办了。看了Related Topics,知道这是个数学题。好吧,只能用数学的方法解决了,不能靠暴力。下面的内容来自Grandyang.
我们为了找规律,先把具体的数字抽象为A,B,C,D,那么我们可以得到:
F(0) = 0A + 1B + 2C +3D
F(1) = 0D + 1A + 2B +3C
F(2) = 0C + 1D + 2A +3B
F(3) = 0B + 1C + 2D +3A
那么,我们通过仔细观察,我们可以得出下面的规律:
F(1) = F(0) + sum - 4D
F(2) = F(1) + sum - 4C
F(3) = F(2) + sum - 4B
那么我们就找到规律了, F(i) = F(i-1) + sum - n * A[n-i]
,是个递推公式。我们最后求的是这个所有F(i)中的最大值。
时间复杂度是O(N),空间复杂度是O(1).
代码如下:
class Solution:
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
_sum = 0
N = len(A)
f = 0
for i, a in enumerate(A):
_sum += a
f += i * a
res = f
for i in range(N - 1, 0, -1):
f = f + _sum - N * A[i]
res = max(res, f)
return res
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
参考资料:
http://www.cnblogs.com/grandyang/p/5869791.html
DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有
本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发