前面两篇的代码中,很多人看到最终的计算结果是通过Serdes.Long()或者 Serdes.String()像是写入到topic中。于是有人问,能否将计算结果按照自定义格式写入topic中?比如自定义的某个类。答案是当然可以。下面就以一个简单的case为例,介绍如何自定义Serdes。
注意:示例中的代码只是展示流程,非生产代码,仅供参考。
官方文档在这里,我用是kafka 1.0. 所以连接也是1.0版本的文档。 http://kafka.apache.org/10/documentation/streams/developer-guide/datatypes.html
项目需求
统计一分钟内(固定时间窗口Tumbling Window)内温度的总和与平均值。类似的还有,最大值,最小值。
主要流程和代码
一个结果中必须同时含有总和与平均值,于是我们设计一个简单数据结构
@Data
@AllArgsConstructor
public class Statistics {
private Long avg;
private Long sum;
private Long count;
}
根据Serdes的要求,我们必须提供对应的Serializer和Deserializer。
参考SerdeLongSerde实现
public static final class LongSerde extends Serdes.WrapperSerde<Long> {
public LongSerde() {
super(new LongSerializer(), new LongDeserializer());
}
}
我们需要实现StatisticsSerializer和StatisticsDeserializer。仍然才考LongSerializer和LongDeserializer的实现, 我们实现了StatisticsSerializer和StatisticsDeserializer。
首先是序列化实现
package com.yq.customized;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.common.serialization.Serializer;
import java.util.Map;
@Slf4j
public class StatisticsSerializer implements Serializer<Statistics> {
private static final ObjectMapper jsonMapper = new ObjectMapper();
@Override
public void configure(Map map, boolean b) {
}
@Override
public byte[] serialize(String s, Statistics obj) {
try {
return jsonMapper.writeValueAsBytes(obj);
}
catch (Exception ex){
log.error("jsonSerialize exception.", ex);
return null;
}
}
@Override
public void close() {
}
}
其次是反序列化实现
package com.yq.customized;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.common.serialization.Serializer;
import java.util.Map;
@Slf4j
public class StatisticsSerializer implements Serializer<Statistics> {
private static final ObjectMapper jsonMapper = new ObjectMapper();
@Override
public void configure(Map map, boolean b) {
}
@Override
public byte[] serialize(String s, Statistics obj) {
try {
return jsonMapper.writeValueAsBytes(obj);
}
catch (Exception ex){
log.error("jsonSerialize exception.", ex);
return null;
}
}
@Override
public void close() {
}
}
最后是我们的主流程。 kTable的格式是 KTable<Windowed, Statistics>。 aggregate函数的初始值和返回都是Statistics类型, 结果存储的格式Materialized.<String, Statistics, WindowStore<Bytes, byte[]>>as(“time-windowed-aggregated-temp-stream-store”)
.withValueSerde(Serdes.serdeFrom(new StatisticsSerializer(), new StatisticsDeserializer())) , 也是Statistics
package com.yq.customized;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.utils.Bytes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Aggregator;
import org.apache.kafka.streams.kstream.Initializer;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.kstream.TimeWindows;
import org.apache.kafka.streams.kstream.Windowed;
import org.apache.kafka.streams.kstream.internals.WindowedDeserializer;
import org.apache.kafka.streams.kstream.internals.WindowedSerializer;
import org.apache.kafka.streams.state.WindowStore;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
/**
* 统计60秒内,温度值的最大值 topic中的消息格式为数字,30, 21或者{"temp":19, "humidity": 25}
*/
public class TemperatureAvgDemo {
private static final int TEMPERATURE_WINDOW_SIZE = 60;
public static void main(String[] args) throws Exception {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-temp-avg");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9092");
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 0);
StreamsBuilder builder = new StreamsBuilder();
KStream<String, String> source = builder.stream("iot-temp");
KTable<Windowed<String>, Statistics> max = source
.selectKey(new KeyValueMapper<String, String, String>() {
@Override
public String apply(String key, String value) {
return "stat";
}
})
.groupByKey()
.windowedBy(TimeWindows.of(TimeUnit.SECONDS.toMillis(TEMPERATURE_WINDOW_SIZE)))
.aggregate(
new Initializer<Statistics>() {
@Override
public Statistics apply() {
Statistics avgAndSum = new Statistics(0L,0L,0L);
return avgAndSum;
}
},
new Aggregator<String, String, Statistics>() {
@Override
public Statistics apply(String aggKey, String newValue, Statistics aggValue) {
//topic中的消息格式为{"temp":19, "humidity": 25}
System.out.println("aggKey:" + aggKey + ", newValue:" + newValue + ", aggKey:" + aggValue);
Long newValueLong = null;
try {
JSONObject json = JSON.parseObject(newValue);
newValueLong = json.getLong("temp");
}
catch (ClassCastException ex) {
newValueLong = Long.valueOf(newValue);
}
aggValue.setCount(aggValue.getCount() + 1);
aggValue.setSum(aggValue.getSum() + newValueLong);
aggValue.setAvg(aggValue.getSum() / aggValue.getCount());
return aggValue;
}
},
Materialized.<String, Statistics, WindowStore<Bytes, byte[]>>as("time-windowed-aggregated-temp-stream-store")
.withValueSerde(Serdes.serdeFrom(new StatisticsSerializer(), new StatisticsDeserializer()))
);
WindowedSerializer<String> windowedSerializer = new WindowedSerializer<>(Serdes.String().serializer());
WindowedDeserializer<String> windowedDeserializer = new WindowedDeserializer<>(Serdes.String().deserializer(), TEMPERATURE_WINDOW_SIZE);
Serde<Windowed<String>> windowedSerde = Serdes.serdeFrom(windowedSerializer, windowedDeserializer);
max.toStream().to("iot-temp-stat", Produced.with(windowedSerde, Serdes.serdeFrom(new StatisticsSerializer(), new StatisticsDeserializer())));
final KafkaStreams streams = new KafkaStreams(builder.build(), props);
final CountDownLatch latch = new CountDownLatch(1);
Runtime.getRuntime().addShutdownHook(new Thread("streams-temperature-shutdown-hook") {
@Override
public void run() {
streams.close();
latch.countDown();
}
});
try {
streams.start();
latch.await();
} catch (Throwable e) {
System.exit(1);
}
System.exit(0);
}
}
效果截图
图中已经有文字说明,结合代码能更清楚了解Kafka Stream。