1.1 排序算法

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。

1.2 排序算法分类

内部排序:指将需要处理的所有数据都加载到内部存储器中进行排序。

外部排序法:数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。

1.3 常见的排序算法分类

 

1.4 算法的时间与空间复杂度

主要还是从算法所占用的「时间」和「空间」两个维度去考量。

时间频率

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为时间频度。记为T(n)。

时间复杂度

在时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。

计算时间复杂度的方法

用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n² 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

1.5 常见的时间复杂度

常见的时间复杂度

常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
从图中可见,我们应该尽可能避免使用指数阶的算法。

 

 

常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1).

int i = 1
int j = 2;

i = i + j - i;
j = i + j - j;    

对数阶O(log2n)

在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。

int i =1;
while(i < n){
 
   
    i = i * 2;
}

线性阶O(n)

for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

for(int i = 1; i <= number; i++){
 
   
    j = i * 2;
}

线性对数阶O(nlogN)

将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

for(int i = 1; i <= number; i++){
 
   
    while(i < number){
 
   
        i = i * 2;
    }
}

平方阶O(n²)

如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)

for (i=1;i<n;i++){
 
   
    for (j=0;j<=n;j++){
 
   
        j = i;
        j++;
    }
}

立方阶O(n³)、K次方阶O(n^k)

O(n³)相当于三层n循环。K次方阶相当于k层n循环。

1.6 平均时间复杂度和最坏时间复杂度

平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。

最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。

平均时间复杂度和最坏时间复杂度是否一致

排序法 平均时间 最差情形 稳定度 额外空间 备注
冒泡 O(n2) O(n2) 稳定 O(1) n小时较好
交换 O(n2) O(n2) 不稳定 O(1) n小时较好
选择 O(n2) O(n2) 不稳定 O(1) n小时较好
插入 O(n2) O(n2) 稳定 O(1) 大部分已排序时较好
基数 O(logRB) O(logRB) 稳定 O(n) B是真数(0-9),R是基数(个十百)
希尔 O(nlogin) O(ns)1<s<2 不稳定 O(1) s是所选分组
快速 O(nlogin) O(n2) 不稳定 O(nlogin) n大时较好
归并 O(nlogin) O(nlogin) 稳定 O(1) n大时较好
O(nlogin) O(nlogin) 不稳定 O(1) n大时较好