01、ShardingSphere 实战:数据分片(一)

传统的将数据集中存储至单一数据节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足互联网的海量数据场景。

从性能方面来说,由于关系型数据库大多采用B+树类型的索引,在数据量超过阈值的情况下,索引深度的增加也将使得磁盘访问的IO次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中式数据库成为系统的最大瓶颈。

B+数 类型参考:

在MySQL中,主要有四种类型的索引,分别为:B-Tree索引,Hash索引,Fulltext索引(MyISAM 表)和R-Tree索引,本文讲的是B-Tree索引。

Mysql索引主要有两种结构:B+Tree索引和Hash索引

(a)Inodb存储引擎 默认是 B+Tree索引

(b) MyISAM 存储引擎 默认是Fulltext索引;

(c)Memory 存储引擎 默认 Hash索引;

Hash索引

mysql中,只有Memory(Memory表只存在内存中,断电会消失,适用于临时表)存储引擎显示支持Hash索引,是Memory表的默认索引类型,尽管Memory表也可以使用B+Tree索引。Hash索引把数据以hash形式组织起来,因此当查找某一条记录的时候,速度非常快。但是因为hash结构,每个键只对应一个值,而且是散列的方式分布。所以它并不支持范围查找和排序等功能。

B+Tree索引

B+Tree是mysql使用最频繁的一个索引数据结构,是Inodb和Myisam存储引擎模式的索引类型。相对Hash索引,B+Tree在查找单条记录的速度比不上Hash索引,但是因为更适合排序等操作,所以它更受欢迎。毕竟不可能只对数据库进行单条记录的操作。

带顺序访问指针的B+Tree

B+Tree所有索引数据都在叶子节点上,并且增加了顺序访问指针,每个叶子节点都有指向相邻叶子节点的指针。

这样做是为了提高区间效率,例如查询key为从18到49的所有数据记录,当找到18后,只要顺着节点和指针顺序遍历就可以以此向访问到所有数据节点,极大提高了区间查询效率。大大减少磁盘I/O读取。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点需要一次I/O就可以完全载入。

从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性,已成为整个系统的关键。

从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于DBA的运维压力就会增大。数据备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值在1TB之内,是比较合理的范围。

通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访问量,是应对高并发和海量数据系统的有效手段。 数据分片的拆分方式又分为垂直分片和水平分片。

垂直分片

按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。 在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的数据库。 下图展示了根据业务需要,将用户表和订单表垂直分片到不同的数据库的方案。

 

垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且,它也并无法真正的解决单点瓶颈。 垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。

水平分片

水平分片又称为横向拆分。 相对于垂直分片,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个分片仅包含数据的一部分。 例如:根据主键分片,偶数主键的记录放入0库(或表),奇数主键的记录放入1库(或表),如下图所示。

 

水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是分库分表的标准解决方案。

挑战

虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也引入了新的问题。

面对如此散乱的分库分表之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的分表中获取。

另一个挑战则是,能够正确的运行在单节点数据库中的SQL,在分片之后的数据库中并不一定能够正确运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。

跨库事务也是分布式的数据库集群要面对的棘手事情。 合理采用分表,可以在降低单表数据量的情况下,尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。 在不能避免跨库事务的场景,有些业务仍然需要保持事务的一致性。 而基于XA的分布式事务由于在并发度高的场景中性能无法满足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。