前言
Kubernetes的流控负载组件:Service和Ingress。
第一节 Service介绍
在kubenetes中,pod是应用程序的载体,我们可以通过pod的ip来访问应用程序,但是pod的ip地址不是固定的,这也就意味着不方便直接采用pod的ip对服务进行访问。
为了解决这个问题,kubenetes提供了Service资源,Service会对提供同一个服务的多个pod进行聚合,并且提供一个统一的入口地址。通过访问Service的入口地址就能访问到后面的pod服务。
Service在很多情况下只是一个概念,真正起作用的其实是kube-proxy服务进程,每个Node节点都运行着一个kube-proxy服务进程。当创建Service的时候会通过api-server向etcd写入创建的service的信息,而kube-prooxy会基于监听的机制发现这种Service的变动,然后它会将最新的Service信息转换成对应的访问规则。
kube-proxy目前支持三种工作模式
- userspace模式
userspace模式下,kube-proxy会为每一个Service创建一个监听端口,发向Cluster IP的请求被iptables规则重定向到kube-proxy监听的端口上,kube-proxy根据LB算法选择一个提供服务的Pod并和其建立链接,以将请求转发到Pod上。
该模式下,kube-proxy充当了一个四层负责均衡器的角色。由于kubbe-proxy运行在userspace中,在进行转发处理时会增加内核和用户空间之间的数据拷贝,虽然比较稳定,但是效率比较低。
- iptables 模式
iptables模式下,kube-proxy为service后端的每个Pod创建对应的iptables规则,直接将发向Cluster IP的请求重定向到一个Pod IP。
该模式下kube-proxy不承担四层负责均衡器的角色,只负责创建iptables规则。该模式的优点是较userspace模式效率更高,但不能提供灵活的 LB策略,当后端Pod不可用时也无法进行重试。
- ipvs模式
ipvs模式和iptables类似,kube-proxy监控Pod的变化并创建相应的ipvs规则。ipvs相对iptables转发效率更高。除此之外,ipvs支持更多的LB算法。
此模块必须安装ipvs内核,否则会降级为iptables
如果未安装ipvs,则先安装ipvs
[root@master ~]# ipvsadm -ln
-bash: ipvsadm: 未找到命令
[root@master ~]# yum list installed | grep ipvsadm
[root@master ~]# yum -y install ipvsadm
[root@master ~]# ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
#开启ipvs
[root@master ~]# kubectl edit cm kube-proxy -n kube-system
configmap/kube-proxy edited
修改配置,将mode改为ipvs
删除pod后,自动重建
[root@master ~]# kubectl delete pod -l k8s-app=kube-proxy -n kube-system
pod "kube-proxy-cmmpk" deleted
pod "kube-proxy-qh7qf" deleted
pod "kube-proxy-t68kh" deleted
[root@master ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 172.17.0.1:31966 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 192.168.88.100:31966 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 192.168.88.100:32437 rr
-> 10.244.1.101:80 Masq 1 0 0
TCP 10.96.0.1:443 rr
-> 192.168.88.100:6443 Masq 1 0 0
TCP 10.96.0.10:53 rr
-> 10.244.0.9:53 Masq 1 0 0
-> 10.244.0.10:53 Masq 1 0 0
TCP 10.96.0.10:9153 rr
-> 10.244.0.9:9153 Masq 1 0 0
-> 10.244.0.10:9153 Masq 1 0 0
TCP 10.100.21.23:443 rr
-> 192.168.88.101:443 Masq 1 0 0
TCP 10.105.96.25:80 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 10.108.225.48:80 rr
-> 10.244.1.101:80 Masq 1 0 0
TCP 10.244.0.0:31966 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 10.244.0.0:32437 rr
-> 10.244.1.101:80 Masq 1 0 0
TCP 10.244.0.1:31966 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 10.244.0.1:32437 rr
-> 10.244.1.101:80 Masq 1 0 0
TCP 127.0.0.1:31966 rr
-> 10.244.1.102:80 Masq 1 0 0
TCP 127.0.0.1:32437 rr
-> 10.244.1.101:80 Masq 1 0 0
TCP 172.17.0.1:32437 rr
-> 10.244.1.101:80 Masq 1 0 0
UDP 10.96.0.10:53 rr
-> 10.244.0.9:53 Masq 1 0 0
-> 10.244.0.10:53 Masq 1 0 0
[root@master ~]#
第二节 Serice资源清单
Service的资源清单文件
apiVersion: v1 版本号
kind: Service 类型
metadata: 元数据
name: svc-service service名称
namespace: dev 命名空间
spec: 详情
selector:标签选择器,用于确定当前Service代理哪些pod
app: nginx
type:Service类型,指定service的访问方式
clusterIP: 虚拟服务的ip地址
sessionAffinity:session亲和性,支持ClientIP、Node两个选项
ports:端口信息
- protocol: TCP
port: 3017 service端口
targetPort: 5003 pod端口
nodePort: 31122 主机端口
- ClusterIP: 默认值,它是kubernetes系统自动分配的虚拟IP,只能在集群内部访问
- NodePort: 将Service通过指定的Node上的端口暴露给外部,通过此方法,就可以在集群外部访问服务
- LoadBalancer: 使用外部负载均衡器完成到服务的负载分发,注意此模式需要外部云环境支持
- ExternalName: 把集群外部的服务引入集群内部,直接使用
第三节 试验准备
在使用service之前,首先利用Deployment创建出3个pod,注意要为pod设置app=nginx-pod的标签
创建deployment.yaml,内容如下
apiVersion: apps/v1 版本号
kind: Deployment 类型
metadata: 元数据
name: pc-deployment rs名称
namespace: dev 所属命名空间
spec: 详情
replicas: 3副本数量3
selector:选择器,通过它指定该控制器管理哪些pod
matchLabels:labels匹配规则,用于匹配template
app: nginx-pod
template: 模板,当副本数量不足时,会根据模板创建pod副本
metadata:
labels:
app: nginx-pod
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- containerPort: 80
# 创建deployment
[root@master ~]# kubectl create -f deployment.yaml
deployment.apps/pc-deployment created
# 查看pod
[root@master ~]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pc-deployment-6696798b78-n79pg 1/1 Running 0 15s 10.244.2.176 node2 <none> <none>
pc-deployment-6696798b78-qp7xk 1/1 Running 0 15s 10.244.1.106 node1 <none> <none>
pc-deployment-6696798b78-xvz8l 1/1 Running 0 15s 10.244.2.175 node2 <none> <none>
[root@master ~]# kubectl get pods -n dev -o wide --show-labels
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES LABELS
pc-deployment-6696798b78-n79pg 1/1 Running 0 26s 10.244.2.176 node2 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
pc-deployment-6696798b78-qp7xk 1/1 Running 0 26s 10.244.1.106 node1 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
pc-deployment-6696798b78-xvz8l 1/1 Running 0 26s 10.244.2.175 node2 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
通过curl命令访问pod
这里3个pod都一样,为了方便观察。修改nginx主页的内容。
[root@master ~]# kubectl exec -it pc-deployment-6696798b78-n79pg -n dev /bin/sh
# echo "nginx 176" > /usr/share/nginx/html/index.html
# cat /usr/share/nginx/html/index.html
nginx 176
# exit
[root@master ~]#
同理修改另外两个pod。
完成之后,测试访问
[root@master ~]# kubectl get pods -n dev -o wide --show-labels
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES LABELS
pc-deployment-6696798b78-n79pg 1/1 Running 0 96m 10.244.2.176 node2 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
pc-deployment-6696798b78-qp7xk 1/1 Running 0 96m 10.244.1.106 node1 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
pc-deployment-6696798b78-xvz8l 1/1 Running 0 96m 10.244.2.175 node2 <none> <none> app=nginx-pod,pod-template-hash=6696798b78
[root@master ~]# curl 10.244.2.176
nginx 176
[root@master ~]# curl 10.244.1.106
nginx 106
[root@master ~]# curl 10.244.2.175
nginx 175
[root@master ~]#
第四节 ClusterIP类型的Service
创建service-clusterip.yaml文件
apiVersion: v1 版本号
kind: Service 类型
metadata: 元数据
name: service-clusterip svc名称
namespace: dev 所属命名空间
spec: 详情
selector:选择器,通过它指定该控制器管理哪些pod
app: nginx-pod
clusterIP: 10.99.99.101 service的ip地址,如果不写,默认会生成一个
type: ClusterIP
ports:
- port: 80 Service端口
targetPort: 80pod端口
# 创建service
[root@master ~]# kubectl create -f service-clusterip.yaml
service/service-clusterip created
# 查看service
[root@master ~]# kubectl get svc service-clusterip -n dev
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service-clusterip ClusterIP 10.99.99.101 <none> 80/TCP 37s
# 查看service详情
[root@master ~]# kubectl describe svc service-clusterip -n dev
Name: service-clusterip
Namespace: dev
Labels: <none>
Annotations: <none>
Selector: app=nginx-pod
Type: ClusterIP
IP: 10.99.99.101
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.106:80,10.244.2.175:80,10.244.2.176:80
Session Affinity: None
Events: <none>
[root@master ~]#
Endpoint
Endpoint是kubernetes中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址,它是根据service配置文件中selector描述产生的。
一个service由一组pod 组成,这些pod通过Endpoints暴露处理, Endpoints是实现实际服务的端点集合。换句话说,service和pod之间的联系是通过endpoints实现的。
负载的分发策略
对service的访问被分发到了后端的Pod上去,目前kubernetes提供了两种负载分发策略
- 如果不定义,默认使用kube-proxy的策略,比如随机、轮询
- 基于客户端地址的会话保持模式,即来自同一个客户端发起的所有请求都会转发到固定的一个pod上,此模式可以在spec中添加sessionAffinity:ClientIP选项
# 查看ipvs的映射规则(rr 轮询)
[root@master ~]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.99.99.101:80 rr
-> 10.244.1.106:80 Masq 1 0 0
-> 10.244.2.175:80 Masq 1 0 0
-> 10.244.2.176:80 Masq 1 0 0
# 发送请求
[root@master ~]# for a in {1..10};do curl 10.99.99.101:80;sleep 2;done;
nginx 176
nginx 175
nginx 106
nginx 176
nginx 175
nginx 106
nginx 176
nginx 175
nginx 106
nginx 176
[root@master ~]#
添加session亲和性
sessionAffinity: ClientIP
# 修改分发策略
[root@master ~]# vim service-clusterip.yaml
[root@master ~]# kubectl apply -f service-clusterip.yaml
Warning: kubectl apply should be used on resource created by either kubectl create --save-config or kubectl apply
service/service-clusterip configured
# 循环访问测试
[root@master ~]# for a in {1..10};do curl 10.99.99.101:80;sleep 2;done;
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
nginx 175
[root@master ~]# kubectl describe svc service-clusterip -n dev
Name: service-clusterip
Namespace: dev
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
{
"apiVersion":"v1","kind":"Service","metadata":{
"annotations":{
},"name":"service-clusterip","namespace":"dev"},"spec":{
"clusterIP":"10.99....
Selector: app=nginx-pod
Type: ClusterIP
IP: 10.99.99.101
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.106:80,10.244.2.175:80,10.244.2.176:80
Session Affinity: ClientIP
Events: <none>
# 删除service
[root@master ~]# kubectl delete -f service-clusterip.yaml
service "service-clusterip" deleted
[root@master ~]#
第五节 HeadLiness的Service
在某些常见下,开发人员可能不想使用Service提供的负载均衡功能,而希望自己来控制负载均衡策略,针对这种场景,kubernetes提供了HeadLiness Service,这类Service不会分配ClusterIP,如果想要访问service,只能通过service的域名进行查询。
创建service-headliness.yaml文件
apiVersion: v1 版本号
kind: Service 类型
metadata: 元数据
name: service-headliness svc名称
namespace: dev 所属命名空间
spec: 详情
selector:选择器,通过它指定该控制器管理哪些pod
app: nginx-pod
clusterIP: None 将clusterIP设置为None,即可创建headliness Service
type: ClusterIP
ports:
- port: 80 Service端口
targetPort: 80pod端口
# 创建service
[root@master ~]# kubectl create -f service-headliness.yaml
service/service-headliness created
# 查看svc
[root@master ~]# kubectl get svc service-headliness -n dev
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service-headliness ClusterIP None <none> 80/TCP 15s
# 查看svc详情
[root@master ~]# kubectl describe svc service-headliness -n dev
Name: service-headliness
Namespace: dev
Labels: <none>
Annotations: <none>
Selector: app=nginx-pod
Type: ClusterIP
IP: None
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.244.1.106:80,10.244.2.175:80,10.244.2.176:80
Session Affinity: None
Events: <none>
[root@master ~]#
# 查看pod
[root@master ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
pc-deployment-6696798b78-n79pg 1/1 Running 0 3h42m
pc-deployment-6696798b78-qp7xk 1/1 Running 0 3h42m
pc-deployment-6696798b78-xvz8l 1/1 Running 0 3h42m
# 查看域名的解析情况
[root@master ~]# kubectl exec -it pc-deployment-6696798b78-n79pg -n dev /bin/sh
# cat /etc/resolv.conf
nameserver 10.96.0.10
search dev.svc.cluster.local svc.cluster.local cluster.local
options ndots:5
# exit
# 域名解析
[root@master ~]# dig @10.96.0.10 service-headliness.dev.svc.cluster.local
; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7 <<>> @10.96.0.10 service-headliness.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 14590
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-headliness.dev.svc.cluster.local. IN A
;; ANSWER SECTION:
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.1.106
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.175
service-headliness.dev.svc.cluster.local. 30 IN A 10.244.2.176
;; Query time: 277 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 一 10月 17 18:04:06 CST 2022
;; MSG SIZE rcvd: 237
第六节 NodePort类型的Service
在之前的样例中,创建的Service的ip地址只有集群内部才可以访问,如果希望将Service暴露给集群外部使用,那么就要使用另外一个类型的Service,称为NodePort类型。NodePort的工作原理其实就是将service的端口映射到Node的一个端口上,然后就可以通过NodeIp:NodePort来访问service了。
创建service-nodeport.yaml
apiVersion: v1 版本号
kind: Service 类型
metadata: 元数据
name: service-nodeport svc名称
namespace: dev 所属命名空间
spec: 详情
selector:选择器,通过它指定该控制器管理哪些pod
app: nginx-pod
type: NodePort
ports:
- port: 80 Service端口
nodePort: 30002指定绑定的node的端口(默认的取值范围是30000~32767),如果不指定,会默认分配
targetPort: 80pod端口
# 创建service
[root@master ~]# kubectl create -f service-nodeport.yaml
service/service-nodeport created
# 查看service
[root@master ~]# kubectl get svc -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service-nodeport NodePort 10.103.202.187 <none> 80:30002/TCP 24s app=nginx-pod
[root@master ~]#
打开浏览器,访问192.168.88.100:30002(NodeIp:NodePort),可以看到请求被转到到了pod。
第七节 LoadBalancer类型的Service
LoadBalancer和NodePort很相似,目的都是向外部暴露一个端口,区别在于LoadBalancer会在集群的外部再来做一次负载均衡设备,而这个设备需要外部环境支持的,外部服务发送到这个设备的请求,会被设备负载之后转发到集群中。
第八节 ExternalName类型的Service
ExternalName类型的Service用于引入集群外部的服务,它通过externalName属性指定外部一个服务的地址,然后在集群内部访问此service就可以访问到外部的服务了。
创建service-externalname.yaml文件,内容如下
apiVersion: v1 版本号
kind: Service 类型
metadata: 元数据
name: service-externalname svc名称
namespace: dev 所属命名空间
spec: 详情
type: ExternalName service类型
externalName: www.baidu.com改成ip地址也可以
# 创建service
[root@master ~]# kubectl create -f service-externalname.yaml
service/service-externalname created
# 查看service
[root@master ~]# kubectl get svc service-externalname -n dev
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service-externalname ExternalName <none> www.baidu.com <none> 15s
# 查看service详情
[root@master ~]# kubectl describe svc service-externalname -n dev
Name: service-externalname
Namespace: dev
Labels: <none>
Annotations: <none>
Selector: <none>
Type: ExternalName
IP:
External Name: www.baidu.com
Session Affinity: None
Events: <none>
# 域名解析
[root@master ~]# dig @10.96.0.10 service-externalname.dev.svc.cluster.local
; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el7 <<>> @10.96.0.10 service-externalname.dev.svc.cluster.local
; (1 server found)
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6528
;; flags: qr aa rd; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;service-externalname.dev.svc.cluster.local. IN A
;; ANSWER SECTION:
service-externalname.dev.svc.cluster.local. 30 IN CNAME www.baidu.com.
www.baidu.com. 30 IN CNAME www.a.shifen.com.
www.a.shifen.com. 30 IN A 14.215.177.39
www.a.shifen.com. 30 IN A 14.215.177.38
;; Query time: 84 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: 二 10月 18 00:56:08 CST 2022
;; MSG SIZE rcvd: 247
[root@master ~]#