题目地址:https://leetcode-cn.com/problems/max-stack/

题目描述

Design a max stack that supports push, pop, top, peekMax and popMax.

1、 push(x)--Pushelementxontostack.;
2、 pop()--Removetheelementontopofthestackandreturnit.;
3、 top()--Gettheelementonthetop.;
4、 peekMax()--Retrievethemaximumelementinthestack.;
5、 popMax()--Retrievethemaximumelementinthestack,andremoveit.Ifyoufindmorethanonemaximumelements,onlyremovethetop-mostone.;

Example 1:

MaxStack stack = new MaxStack();
stack.push(5); 
stack.push(1);
stack.push(5);
stack.top(); -> 5
stack.popMax(); -> 5
stack.top(); -> 1
stack.peekMax(); -> 5
stack.pop(); -> 1
stack.top(); -> 5

Note:

1、 -1e7<=x<=1e7
2、 Numberofoperationswon'texceed10000.;
3、 Thelastfouroperationswon'tbecalledwhenstackisempty.;

题目大意

设计一个最大栈,支持 push、pop、top、peekMax 和 popMax 操作。

解题方法

双栈

这个题最大的难点在与popMax操作,即要求可以弹出栈中的最大值。

我们使用双栈,一个存放所有的数值,一个存放到当前数值为止的最大值。当要弹出最大值的时候,需要一个辅助的栈,存放数值栈中不是最大值的那些数字,弹出最大值之后,再把辅助栈中的所有元素Push到栈中。

C++代码如下:

class MaxStack {
public:
    /** initialize your data structure here. */
    MaxStack() {
    }
    
    void push(int x) {
        if (!maxVals.empty() && x < maxVals.top()) {
            maxVals.push(maxVals.top());
        } else {
            maxVals.push(x);
        }
        values.push(x);
    }
    
    int pop() {
        int val = values.top();
        values.pop();
        maxVals.pop();
        return val;
    }
    
    int top() {
        return values.top();
    }
    
    int peekMax() {
        int maxv = maxVals.top();
        return maxv;
    }
    
    int popMax() {
        int maxv = maxVals.top();
        stack<int> temp;
        while (!values.empty() && values.top() != maxv) {
            temp.push(values.top());
            values.pop();
            maxVals.pop();
        }
        values.pop();
        maxVals.pop();
        while (!temp.empty()) {
            push(temp.top());
            temp.pop();
        }
        return maxv;
    }
private:
    stack<int> values;
    stack<int> maxVals;
};

/**
 * Your MaxStack object will be instantiated and called as such:
 * MaxStack* obj = new MaxStack();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->top();
 * int param_4 = obj->peekMax();
 * int param_5 = obj->popMax();
 */

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

2022

DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有

本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发