题目地址:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/description/
题目描述
Sayyou have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k
transactions.
Note:
Youmay not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
题目大意
给出了一堆股票价格,最多做k次交易,求最大的收益。
解题方法
就是123. Best Time to Buy and Sell Stock IIIopen in new window昨天的题,只是把交易2次改成了交易k次。这次题目有个坑,就是给了一个特别大的k,导致构建数组的时候,内存超了。在123题目里也说了,如果k>=N
的时候相当于没有限制,题目退化成了不限次数的交易,所以我们直接求今天比昨天高的部分即可。当k<N
的时候,我们仍然使用两个变量,全局的收益g和当前天卖出股票的收益l.
以下来自Grandyang的博客open in new window:
这里我们需要两个递推公式来分别更新两个变量local和global,参见网友Code Ganker的博客,我们其实可以求至少k次交易的最大利润。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j]),
其中局部最优值是比较前一天并少交易一次的全局最优加上大于0的差值,和前一天的局部最优加上差值后相比,两者之中取较大值,而全局最优比较局部最优和前一天的全局最优。
class Solution(object):
def maxProfit(self, k, prices):
"""
:type k: int
:type prices: List[int]
:rtype: int
"""
if k <= 0 or not prices: return 0
N = len(prices)
if k >= N:
_sum = 0
for i in xrange(1, N):
if prices[i] > prices[i - 1]:
_sum += prices[i] - prices[i - 1]
return _sum
g = [0] * (k + 1)
l = [0] * (k + 1)
for i in xrange(N - 1):
diff = prices[i + 1] - prices[i]
for j in xrange(k, 0, -1):
l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff)
g[j] = max(l[j], g[j])
return g[-1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有
本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发