题目地址:https://leetcode.com/problems/subarray-sum-equals-k/description/

题目描述

Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.

Example 1:

Input:nums = [1,1,1], k = 2
Output: 2

Note:

1、 Thelengthofthearrayisinrange[1,20,000].;
2、 Therangeofnumbersinthearrayis[-1000,1000]andtherangeoftheintegerkis[-1e7,1e7].;

题目大意

求数组中有多少个连续子数组的和正好等于k。

解题方法

看了数组的长度,明显O(n^2)的时间复杂度会超时。这个时间复杂度一般只能用O(N)的解法了。

使用一个字典保存数组某个位置之前的数组和,然后遍历数组求和,这样当我们求到一个位置的和的时候,向前找sum-k是否在数组中,如果在的话,更新结果为之前的结果+(sum-k出现的次数)。同时,当前这个sum出现的次数就多了一次。

这个字典的意义是什么呢?其意义就是我们在到达i位置的时候,前i项的和出现的次数的统计。我们想找的是在i位置向前的连续区间中,有多少个位置的和是k。有了这个统计,我们就不用向前一一遍历找sum - k在哪些位置出现了,而是直接得出了前面有多少个区间。所以,在每个位置我们都得到了以这个位置为结尾的并且和等于k的区间的个数,所以总和就是结果。

这个题的解法不难想出来,因为如果要降低时间复杂度,应该能想到增加空间复杂度,那么要么使用数组,要么就是用字典之类的,保留之前的结果。

时间复杂度是O(N),空间复杂度是O(N).

代码如下:

class Solution(object):
    def subarraySum(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: int
        """
        n = len(nums)
        d = collections.defaultdict(int)
        d[0] = 1
        sum = 0
        res = 0
        for i in range(n):
            sum += nums[i]
            if sum - k in d:
                res += d[sum - k]
            d[sum] += 1
        return res

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

参考资料:

https://www.youtube.com/watch?v=mKXIH9GnhgU

DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有

本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发