13、Spark深入解析、SparkCore之RDD依赖关系、DAG生成、划分Stage

Lineage

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

 

(1)读取一个HDFS文件并将其中内容映射成一个个元组

scala> val wordAndOne = sc.textFile("/fruit.tsv").flatMap(_.split("\t")).map((_,1))
wordAndOne: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[22] at map at <console>:24

(2)统计每一种key对应的个数

scala> val wordAndCount = wordAndOne.reduceByKey(_+_)
wordAndCount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[23] at reduceByKey at <console>:26

(3)查看“wordAndOne”的Lineage

scala> wordAndOne.toDebugString
res5: String =
(2) MapPartitionsRDD[22] at map at <console>:24 []
 |  MapPartitionsRDD[21] at flatMap at <console>:24 []
 |  /fruit.tsv MapPartitionsRDD[20] at textFile at <console>:24 []
 |  /fruit.tsv HadoopRDD[19] at textFile at <console>:24 []

(4)查看“wordAndCount”的Lineage

scala> wordAndCount.toDebugString
res6: String =
(2) ShuffledRDD[23] at reduceByKey at <console>:26 []
 +-(2) MapPartitionsRDD[22] at map at <console>:24 []
    |  MapPartitionsRDD[21] at flatMap at <console>:24 []
    |  /fruit.tsv MapPartitionsRDD[20] at textFile at <console>:24 []
    |  /fruit.tsv HadoopRDD[19] at textFile at <console>:24 []

(5)查看“wordAndOne”的依赖类型

scala> wordAndOne.dependencies
res7: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.OneToOneDependency@5d5db92b)

(6)查看“wordAndCount”的依赖类型

scala> wordAndCount.dependencies
res8: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.ShuffleDependency@63f3e6a8)

注意:RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

宽窄依赖

两种依赖关系类型

RDD和它依赖的父RDD的关系有两种不同的类型,即

  • 宽依赖(wide dependency/shuffle dependency)
  • 窄依赖(narrow dependency)

 

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle,宽依赖我们形象的比喻为超生

 

 

如何区分宽窄依赖

窄依赖:父RDD的一个分区只会被子RDD的一个分区依赖
宽依赖:父RDD的一个分区会被子RDD的多个分区依赖(涉及到shuffle)

面试题

子RDD的一个分区依赖多个父RDD是宽依赖还是窄依赖?

不能确定,也就是宽窄依赖的划分依据是父RDD的一个分区是否被子RDD的多个分区所依赖,是,就是宽依赖,或者从shuffle的角度去判断,有shuffle就是宽依赖

为什么要设计宽窄依赖

1.对于窄依赖

Spark可以并行计算
如果有一个分区数据丢失,只需要从父RDD的对应1个分区重新计算即可,不需要重新计算整个任务,提高容错。

2.对于宽依赖

是划分Stage的依据

DAG(有向无环图)

 

DAG是什么

DAG(Directed Acyclic Graph有向无环图)指的是数据转换执行的过程,有方向,无闭环(其实就是RDD执行的流程)
原始的RDD通过一系列的转换操作就形成了DAG有向无环图,任务执行时,可以按照DAG的描述,执行真正的计算(数据被操作的一个过程)

DAG的边界

开始:通过SparkContext创建的RDD
结束:触发Action,一旦触发Action就形成了一个完整的DAG

注意:

一个Spark应用中可以有一到多个DAG,取决于触发了多少次Action
一个DAG中会有不同的阶段/stage,划分阶段/stage的依据就是宽依赖
一个阶段/stage中可以有多个Task,一个分区对应一个Task

DAG划分Stage

 
为什么要划分Stage??(并行计算)
一个复杂的业务逻辑如果有shuffle,那么就意味着前面阶段产生结果后,才能执行下一个阶段,即下一个阶段的计算要依赖上一个阶段的数据。那么我们按照shuffle进行划分(也就是按照宽依赖就行划分),就可以将一个DAG划分成多个Stage/阶段,在同一个Stage中,会有多个算子操作,可以形成一个pipeline流水线,流水线内的多个平行的分区可以并行执行

如何划分DAG的Stage

对于窄依赖,partition的转换处理在stage中完成计算,不划分(将窄依赖尽量放在在同一个stage中,可以实现流水线计算)

对于宽依赖,由于有shuffle的存在,只能在父RDD处理完成后,才能开始接下来的计算,也就是说需要要划分stage(出现宽依赖即拆分)

小结
Spark会根据shuffle/宽依赖使用回溯算法来对DAG进行Stage划分,从后往前,遇到宽依赖就断开,遇到窄依赖就把当前的RDD加入到当前的stage/阶段中

具体的划分算法请参见AMP实验室发表的论文
《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》
http://xueshu.baidu.com/usercenter/paper/show?paperid=b33564e60f0a7e7a1889a9da10963461&site=xueshu_se