题目地址:https://leetcode.com/problems/minimum-path-sum/description/
题目描述
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
题目大意
求一个矩阵从左上角到右下角的最短路径和。
解题方法
第一感觉是dfs,但是题目没有说范围,估计会超时。然后就想到了DP。
使用DP创建了一个path数组,和grid数组是一样的。path代表了从左上角开始到某个点的最短路径。那么很容易知道,新的一个点的最短路径一定等于其上方、左方最短路径+当前的值。因此写成双重循环即可。因为要用到上方、左方的值,数组第一行和第一列会超出边框,其实只需要把这个方向设为前面的那个路径值即可。
这个算法的时间啊复杂度是O(m * n),空间复杂度是O(m * n)。
代码如下:
class Solution:
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
path = copy.deepcopy(grid)
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
before = 0
elif i == 0:
before = path[i][j-1]
elif j == 0:
before = path[i-1][j]
else:
before = min(path[i-1][j], path[i][j-1])
path[i][j] = before + grid[i][j]
return path[m-1][n-1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
发现path数组没有必要重新复制出来,可以直接使用grid代表了。这样实际上就对grid进行了一个覆盖:遍历过的地方代表path,还没遍历到的地方代表grid。
这个算法的时间复杂度是O(m * n),空间复杂度是O(1)。由于少了复制数组的一步,事实上真的变快了。
class Solution:
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
before = 0
elif i == 0:
before = grid[i][j-1]
elif j == 0:
before = grid[i-1][j]
else:
before = min(grid[i-1][j], grid[i][j-1])
grid[i][j] = before + grid[i][j]
return grid[m-1][n-1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
二刷的时候使用的C++,方法仍然是动态规划,第一行的每个状态等于左边状态+当前位置,和第一列的每个状态等于上边状态+当前位置。其余位置等于上边和左边的状态最小值加上当前位置。
C++代码如下:
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
const int M = grid.size(), N = grid[0].size();
vector<vector<int>> dp(M, vector<int>(N, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < M; ++i)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 0; j < N; ++j)
dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < M; ++i) {
for (int j = 1; j < N; ++j) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[M - 1][N - 1];
}
};
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
参考资料:
DDKK.COM 弟弟快看-教程,程序员编程资料站,版权归原作者所有
本文经作者:负雪明烛 授权发布,任何组织或个人未经作者授权不得转发