Morris遍历作用

Morris遍历是用于节省二叉树遍历的时候的空间的
如果是常规的二叉树遍历,不管是递归还是迭代实现的,空间复杂度都是O(M),M是树的高度,因为每一个节点都会回到它三次,遍历的先后序的不同就是在这三次中的哪一次访问这个结点

//第一次
process(node.left)
//第二次
process(node.right)
//第三次

因此需要有一个栈存储当前节点,当回到当前节点时则从栈中弹出
栈中会压入多少个节点,由树高决定
 
而Morris遍历就是对二叉树遍历的空间复杂的优化

Morris遍历的细节

Morris遍历是利用树中节点的空闲右指针

假设来到当前节点cur,开始时cur来到头节点位置
1)如果cur没有左孩子,cur向右移动(cur = cur.right)
2)如果cur有左孩子,找到左子树上最右的节点mostRight
a.如果mostRight的右指针指向空,让其指向cur,然后cur向左移动(cur = cur.left)
b.如果mostRight的右指针指向cur,让其指向null,然后cur向右移动(cur = cur.right)
3)cur为空是遍历停止
 

其实就是用当前节点的左子树的最右节点的右指针状态,标记是第几次来到当前节点
如果当前节点的左子树的最右节点的右指针为null,表示第一次来到当前节点
如果当前节点的左子树的最右节点的右指针指向当前节点,表示之前已经来过一次,现在是第二次来到当前节点

Morris遍历代码实现

    /**
     * Morris序列
     * @param head
     */
    public static void process(Node head) {
   
     
        if (head == null) return;
        Node cur = head; // cur指针,一开始在头节点
        Node mostRight = null; // 左子树的最右节点
        while (cur != null) {
   
     
            mostRight = cur.left; // 左树
            if (mostRight != null) {
   
      // 左树不为空
                // 一直往右
                while (mostRight.right != null && mostRight.right != cur) mostRight = mostRight.right;
                // 左子树的最右节点的右指针为空,第一次来
                if (mostRight.right == null) {
   
     
                    // 指向当前节点,然后cur往左移
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
   
     
                    // 左子树的最右节点的右指针不为空,第二次来,置空mosrtRight的right指针
                    mostRight.right = null;
                }
            }
            // cur指针往右
            cur = cur.right;
        }
    }

Morris先序遍历

    /**
     * Morris先序遍历
     * @param head
     */
    public static void processPre(Node head) {
   
     
        if (head == null) return;
        Node cur = head;
        Node mostRight = null;
        while (cur != null) {
   
     
            mostRight = cur.left;
            if (mostRight != null) {
   
     
                while (mostRight.right != null && mostRight.right != cur) mostRight = mostRight.right;
                if (mostRight.right == null) {
   
     
                    mostRight.right = cur;
                    // 有左树的节点,第一次来到的时候就打印
                    System.out.println(cur.value);
                    cur = cur.left;
                    continue;
                } else {
   
     
                    mostRight.right = null;
                }
            } else {
   
     
                // 没有左树的节点,直接打印
                System.out.println(cur.value);
            }
            cur = cur.right;
        }
    }

Morris中序遍历

    /**
     * Morris中序遍历
     * @param head
     */
    public static void processIn(Node head) {
   
     
        if (head == null) return;
        Node cur = head;
        Node mostRight = null;
        while (cur != null) {
   
     
            mostRight = cur.left;
            if (mostRight != null) {
   
     
                while (mostRight.right != null && mostRight.right != cur) mostRight = mostRight.right;
                if (mostRight.right == null) {
   
     
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
   
     
                    mostRight.right = null;
                }
            }
            // 不管是否有左树,都会来到这里,有左树的第二次会来到这里
            System.out.println(cur.value);
            cur = cur.right;
        }
    }

Morris后序遍历

    /**
     * Morris后续遍历
     * @param head
     */
    public static void processPost(Node head) {
   
     
        if (head == null) return;
        Node cur = head;
        Node mostRight = null;
        while (cur != null) {
   
     
            mostRight = cur.left;
            if (mostRight != null) {
   
     
                while (mostRight.right != null && mostRight.right != cur) mostRight = mostRight.right;
                if (mostRight.right == null) {
   
     
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
   
     
                    mostRight.right = null;
                    //每次第二次返回当该节点时,打印它的左树的右边界,以逆序的方式
                    printEdge(cur.left);
                }
            }
            cur = cur.right;
        }
        //最后逆序打印整棵树的右边界
        printEdge(head);
    }

    // 逆序打印树的右边界
    private static void printEdge(Node head) {
   
     
        // 树的右边界,链表反转
        Node tail = reverse(head);
        Node cur = tail;
        // 遍历链表打印
        while (cur != null) {
   
     
            System.out.println(cur.value);
            cur = cur.right;
        }
        // 把链表返回回去
        reverse(tail);
    }

    // 反转树的右边界链表
    private static Node reverse(Node head) {
   
     
        Node pre = null;
        Node cur = head;
        Node right = null;
        while (cur != null) {
   
     
            right = cur.right;
            cur.right = pre;
            pre = cur;
            cur = right;
        }
        return pre;
    }

Morris遍历判断一颗树是否是搜索二叉树

/**
 * Morris遍历判断一颗树是否是搜索二叉树
 * Created by huangjunyi on 2022/9/10.
 */
public class Morris02 {
   
     

    private static class Node {
   
     
        Node left;
        Node right;
        int value;
    }

    public static boolean isBST(Node head) {
   
     
        if (head == null) return true;
        Node cur = head;
        Node mostRight = null;
        //拿一个变量preValue记录前一个遍历到的结点的值
        Integer preValue = null;
        while (cur != null) {
   
     
            mostRight = cur.left;
            if (mostRight != null) {
   
     
                while (mostRight.right != null && mostRight.right != cur) mostRight = mostRight.right;
                if (mostRight.right == null) {
   
     
                    mostRight.right = cur;
                    cur = cur.left;
                    continue;
                } else {
   
     
                    mostRight.right = null;
                }
            }
            // 以Morris中序遍历的顺序,判果前一个节点的值是否比当前节点大,是则返回false,代表不是BST
            // 这里是不在乎树的指针被改乱掉的,所有直接返回false,否则就不能直接返回false,要遍历完再返回
            if (preValue != null && cur.value <= preValue) return false;
            preValue = cur.value;
            cur = cur.right;
        }
        return true;
    }

}

Morris遍历求一棵树离头节点最近的叶节点的高度

/**
 * Morris遍历求一棵树离头节点最近的叶节点的高度
 * Created by huangjunyi on 2022/9/10.
 */
public class Morris03 {
   
     

    private static class Node {
   
     
        Node left;
        Node right;
        int value;
    }

    public static int getMinHigh(Node head) {
   
     
        if (head == null) return 0;
        Node cur = head;
        Node mostRight = null;
        int minHigh = Integer.MAX_VALUE;
        int leftRightBoardsize = -1;
        int curLevel = 0; // 当前节点层数
        while (cur != null) {
   
     
            mostRight = cur.left;
            leftRightBoardsize = 1;
            if (mostRight != null) {
   
     
                //当前节点有左树
                while (mostRight.right != null && mostRight.right != cur) {
   
     
                    // 寻找当前节点的左树的最右节点的同时记录左树右边界的节点数
                    mostRight = mostRight.right;
                    leftRightBoardsize++;
                }
                if (mostRight.right == null) {
   
     
                    // 进入这里,表示第一次来到当前节点
                    // 把左树最右节点的右指针修改为指向当前节点,cur指针往左节点移动
                    mostRight.right = cur;
                    curLevel++;
                    cur = cur.left;
                    continue;
                } else {
   
     
                    // 进入这里,表示第二次来到当前节点
                    // 看看当前节点的左子树的最右节点的左节点是否为空,为空代表它是叶子节点
                    // 发现左树最右节点是子节点,清算一下,更新minHigh
                    if (mostRight.left == null) {
   
     
                        minHigh = Math.min(minHigh, curLevel);
                    }
                    // curLevel当前是左树最右节点的高度,减去leftRightBoardsize左树右边界节点数,得出当前节点高度
                    curLevel -= leftRightBoardsize;
                    // 恢复当前节点的左子树的最右节点的右指针
                    mostRight.right = null;
                }
            } else {
   
     
                //当前节点没有左树,单纯层数++
                curLevel++;
            }
            cur = cur.right;
        }
        return minHigh;
    }

}

什么时候用Morris遍历

笔试的时候不要用,用最普通最好实现的递归就OK
面试的时候可以使用Morris遍历,进行优化

如果严格需要左右子树的答案,才能整合出当前节点的答案,那么只能用递归,不能用Morris遍历
如果不是严格依赖左右子树的答案的,可以用Morris遍历进行优化