一、 状态概述:
Flink中的状态:
1、 算子状态(OperatorState);
2、 键控状态(KeyedState);
3、 状态后端(StateBackends);
由一个任务维护,并且用来计算某个结果的所有数据,都属于这个任务的状态
可以认为任务状态就是一个本地变量,可以被任务的业务逻辑访问
Flink 会进行状态管理,包括状态一致性、故障处理以及高效存储和访问,以便于开发人员可以专注于应用程序的逻辑
在Flink中,状态始终与特定算子相关联
为了使运行时的Flink了解算子的状态,算子需要预先注册其状态
总的来说,有两种类型的状态:
1、 算子状态(OperatorState);
1)算子状态的作用范围限定为算子任务(也就是不能跨任务访问)
2、 键控状态(KeyedState);
1)根据输入数据流中定义的键(key)来维护和访问
二、 算子状态 Operator State
2.1 概述
算子状态的作用范围限定为算子任务,同一并行任务所处理的所有数据都可以访问到相同的状态。
状态对于同一任务而言是共享的。(不能跨slot)
状态算子不能由相同或不同算子的另一个任务访问。
2.2 算子状态数据结构
1、 列表状态(Liststate);
1)将状态表示为一组数据的列表
2、 联合列表状态(Unionliststate);
1)也将状态表示未数据的列表。它与常规列表状态的区别在于,在发生故障时,或者从保存点(savepoint)启动应用程序时如何恢复
3)广播状态(Broadcast state)
1)如果一个算子有多项任务,而它的每项任务状态又都相同,那么这种特殊情况最适合应用广播状态
2.3 代码测试
实际一般用算子状态比较少,一般还是键控状态用得多一点。
代码:
package org.flink.state;
import org.flink.beans.SensorReading;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.checkpoint.ListCheckpointed;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Collections;
import java.util.List;
/** *
* @remark 算子状态测试
*/
public class StateTest1_OperatorState {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// socket文本流
DataStream<String> inputStream = env.socketTextStream("10.31.1.122", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 定义一个有状态的map操作,统计当前分区数据个数
SingleOutputStreamOperator<Integer> resultStream = dataStream.map(new MyCountMapper());
resultStream.print();
env.execute();
}
// 自定义MapFunction
public static class MyCountMapper implements MapFunction<SensorReading, Integer>, ListCheckpointed<Integer>{
// 定义一个本地变量,作为算子状态
private Integer count = 0;
@Override
public Integer map(SensorReading value) throws Exception {
count++;
return count;
}
@Override
public List<Integer> snapshotState(long checkpointId, long timestamp) throws Exception {
return Collections.singletonList(count);
}
@Override
public void restoreState(List<Integer> state) throws Exception {
for( Integer num: state )
count += num;
}
}
}
输入:
输出:
三、 键控状态 Keyed State
3.1 概述
键控状态是根据输入数据流中定义的键(key)来维护和访问的。
Flink 为每个key维护一个状态实例,并将具有相同键的所有数据,都分区到同一个算子任务中,这个任务会维护和处理这个key对应的状态。
当任务处理一条数据时,他会自动将状态的访问范围限定为当前数据的key。
3.2 键控状态数据结构
1、 值状态(valuestate);
将状态表示为单个的值
2、 列表状态(Liststate);
将状态表示为一组数据的列表
3、 映射状态(Mapstate);
将状态表示为一组key-value对
4、 聚合状态(Reducingstate&AggregatingState);
将状态表示为一个用于聚合操作的列表
3.3 测试代码
代码:
package org.flink.state;
import org.flink.beans.SensorReading;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.*;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @remark 键控状态测试
*/
public class StateTest2_KeyedState {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// socket文本流
DataStream<String> inputStream = env.socketTextStream("10.31.1.122", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 定义一个有状态的map操作,统计当前sensor数据个数
SingleOutputStreamOperator<Integer> resultStream = dataStream
.keyBy("id")
.map( new MyKeyCountMapper() );
resultStream.print();
env.execute();
}
// 自定义RichMapFunction
public static class MyKeyCountMapper extends RichMapFunction<SensorReading, Integer>{
private ValueState<Integer> keyCountState;
// 其它类型状态的声明
private ListState<String> myListState;
private MapState<String, Double> myMapState;
private ReducingState<SensorReading> myReducingState;
@Override
public void open(Configuration parameters) throws Exception {
keyCountState = getRuntimeContext().getState(new ValueStateDescriptor<Integer>("key-count", Integer.class, 0));
myListState = getRuntimeContext().getListState(new ListStateDescriptor<String>("my-list", String.class));
myMapState = getRuntimeContext().getMapState(new MapStateDescriptor<String, Double>("my-map", String.class, Double.class));
// myReducingState = getRuntimeContext().getReducingState(new ReducingStateDescriptor<SensorReading>())
}
@Override
public Integer map(SensorReading value) throws Exception {
// 其它状态API调用
// list state
for(String str: myListState.get()){
System.out.println(str);
}
myListState.add("hello");
// map state
myMapState.get("1");
myMapState.put("2", 12.3);
myMapState.remove("2");
// reducing state
// myReducingState.add(value);
myMapState.clear();
Integer count = keyCountState.value();
count++;
keyCountState.update(count);
return count;
}
}
}
输入:
输出:
3.4 场景测试
假设做一个温度报警,如果一个传感器前后温差超过10度就报警。这里使用键控状态Keyed State + flatMap来实现
代码:
package org.flink.state;
import org.flink.beans.SensorReading;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* @remark 键控状态-温度预警
*/
public class StateTest3_KeyedStateApplicationCase {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// socket文本流
DataStream<String> inputStream = env.socketTextStream("10.31.1.122", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 定义一个flatmap操作,检测温度跳变,输出报警
SingleOutputStreamOperator<Tuple3<String, Double, Double>> resultStream = dataStream.keyBy("id")
.flatMap(new TempChangeWarning(10.0));
resultStream.print();
env.execute();
}
// 实现自定义函数类
public static class TempChangeWarning extends RichFlatMapFunction<SensorReading, Tuple3<String, Double, Double>>{
// 私有属性,温度跳变阈值
private Double threshold;
public TempChangeWarning(Double threshold) {
this.threshold = threshold;
}
// 定义状态,保存上一次的温度值
private ValueState<Double> lastTempState;
@Override
public void open(Configuration parameters) throws Exception {
lastTempState = getRuntimeContext().getState(new ValueStateDescriptor<Double>("last-temp", Double.class));
}
@Override
public void flatMap(SensorReading value, Collector<Tuple3<String, Double, Double>> out) throws Exception {
// 获取状态
Double lastTemp = lastTempState.value();
// 如果状态不为null,那么就判断两次温度差值
if( lastTemp != null ){
Double diff = Math.abs( value.getTemperature() - lastTemp );
if( diff >= threshold )
out.collect(new Tuple3<>(value.getId(), lastTemp, value.getTemperature()));
}
// 更新状态
lastTempState.update(value.getTemperature());
}
@Override
public void close() throws Exception {
lastTempState.clear();
}
}
}
输入:
sensor_1,1547718199,35.8
sensor_1,1547718199,32.4
sensor_1,1547718199,42.4
sensor_10,1547718205,52.6
sensor_10,1547718205,22.5
sensor_7,1547718202,6.7
sensor_7,1547718202,9.9
sensor_1,1547718207,36.3
sensor_7,1547718202,19.9
sensor_7,1547718202,30
输出:
中间没有输出(sensor_7,9.9,19.9),应该是double浮点数计算精度问题,不管它
四、 状态后端 State Backends
4.1 概述
每传入一条数据,有状态的算子任务都会读取和更新状态。
由于有效的状态访问对于处理数据的低延迟至关重要,因此每个并行任务都会在本地维护其状态,以确保快速的状态访问。
状态的存储、访问以及维护,由一个可插入的组件决定,这个组件就叫做状态后端( state backend)
状态后端主要负责两件事:本地状态管理,以及将检查点(checkPoint)状态写入远程存储
4.2 选择一个状态后端
1、 MemoryStateBackend;
内存级的状态后端,会将键控状态作为内存中的对象进行管理,将它们存储在TaskManager的JVM堆上,而将checkpoint存储在JobManager的内存中
特点:快速、低延迟,但不稳定
2、 FsStateBackend(默认);
将checkpoint存到远程的持久化文件系统(FileSystem)上,而对于本地状态,跟MemoryStateBackend一样,也会存在TaskManager的JVM堆上
同时拥有内存级的本地访问速度,和更好的容错保证
3、 RocksDBStateBackend;
将所有状态序列化后,存入本地的RocksDB中存储
4.3 配置文件
flink-conf.yaml
#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================
# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
# state.backend: filesystem
上面这个就是默认的checkpoint存在filesystem
# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend).
#
# state.backend.incremental: false
# The failover strategy, i.e., how the job computation recovers from task failures.
# Only restart tasks that may have been affected by the task failure, which typically includes
# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.
jobmanager.execution.failover-strategy: region
上面这个region指,多个并行度的任务要是有个挂掉了,只重启那个任务所属的region(可能含有多个子任务),而不需要重启整个Flink程序
4.4 样例代码
其中使用RocksDBStateBackend需要另外加入pom依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>1.9.0</version>
</dependency>
代码:
package org.flink.state;
import org.flink.beans.SensorReading;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @remark 状态后端测试
*/
public class StateTest4_FaultTolerance {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 1. 状态后端配置
env.setStateBackend( new MemoryStateBackend());
env.setStateBackend( new FsStateBackend(""));
env.setStateBackend( new RocksDBStateBackend(""));
// 2. 检查点配置
env.enableCheckpointing(300);
// 高级选项
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().setCheckpointTimeout(60000L);
env.getCheckpointConfig().setMaxConcurrentCheckpoints(2);
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(100L);
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);
env.getCheckpointConfig().setTolerableCheckpointFailureNumber(0);
// 3. 重启策略配置
// 固定延迟重启
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 10000L));
// 失败率重启
env.setRestartStrategy(RestartStrategies.failureRateRestart(3, Time.minutes(10), Time.minutes(1)));
// socket文本流
DataStream<String> inputStream = env.socketTextStream("10.31.1.122", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
dataStream.print();
env.execute();
}
}